Tests for independence in non-parametric heteroscedastic regression models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric and Non-Parametric Tests for Multivariate Independence in IC Models

The so-called independent component (IC) model states that the observed p-vector X is generated via X = ΛZ + μ, where μ is a pvector, Λ is an invertible matrix, and the centered random vector Z has independent marginals Zi. We consider the problem of testing, on the basis of n i.i.d. copies of X = (X,X), the null hypothesis under which the multivariate marginals X and X are independent. Under a...

متن کامل

Predictive Interval Models for Non-parametric Regression

Having a regression model, we are interested in finding two-sided intervals that are guaranteed to contain at least a desired proportion of the conditional distribution of the response variable given a specific combination of predictors. We name such intervals predictive intervals. This work presents a new method to find two-sided predictive intervals for non-parametric least squares regression...

متن کامل

Tests for Independence in Nonparametric Regression

Consider the nonparametric regression model Y = m(X) + ε, where the function m is smooth, but unknown. We construct tests for the independence of ε and X, based on n independent copies of (X, Y ). The testing procedures are based on differences of neighboring Y ’s. We establish asymptotic results for the proposed tests statistics, investigate their finite sample properties through a simulation ...

متن کامل

Tests for independence in nonparametric regression ( supplement )

Proof of (2.17) From (2.10) we have with high probability for large n and uniformly in x and y √ n(F n (x, y) − ˆ F X (x) ˆ G(y)) ≤ α n x, y + log 2 n n − G(y)α n (x, ∞) − ˆ F X (x) α n ∞, y − log 2 n n + 2C log 2 n √ n , √ n(F n (x, y) − ˆ F X (x) ˆ G(y)) ≥ α n x, y − log 2 n n − G(y)α n (x, ∞) − ˆ F X (x) α n ∞, y + log 2 n n − 2C log 2 n √ n. Set V n,0 = √ n(F n − ˆ F X ˆ G). From (2.12) and...

متن کامل

Efficient Quantile Regression for Heteroscedastic Models

Quantile regression provides estimates of a range of conditional quantiles. This stands in contrast to traditional regression techniques, which focus on a single conditional mean function. Lee et al. (2012) proposed efficient quantile regression by rounding the sharp corner of the loss. The main modification generally involves an asymmetric l2 adjustment of the loss function around zero. We ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2011

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2011.01.002